
Exercises

Lecture 1

1) Let E be a differential field with constants C.

(i) Let A ∈ gln(E) and V = {v ∈ En | v′ = Av}. Show that if v1, . . . , vr ∈ V are linearly
dependent over E then they are linearly dependent over C. Conclude that dimC V ≤ n. Hint: Use
induction. Let v1 =

∑r
i=2 aivi with ai ∈ E and consider v′1 −Av1 = 0

(ii) Let L(y) = y(n) + an−1y
(n−1) + a0v with ai ∈ E and let V = {v ∈ E | L(v) = 0}. Show

that dimC V ≤ n. Hint: Consider the companion system Y ′ = ALY .

(iii) Define the wronskian matrix

Wr(y1, . . . , yn =


y1 . . . yn
y′1 . . . y′n
...

...
...

y
(n−1)
1 . . . y(n−1)

n

 (1)

and the wronskian determinant (referred to as the wronskian) aswr(y1, . . . , yn) = det(Wr(y1, . . . , yn)).
Show that y1, . . . , yn are linearly dependent over C if and only if wr(y1, . . . , yn) = 0. Hint: If
wr(y1, . . . , yn) = 0, then there exist a0, . . . an−1 in E, not all zero, such that
(a0, . . . an−1)Wr(y1, . . . , yn) = 0. Now use (ii).

2) Let k be a differential field with algebraically closed constants C and b1, . . . , bm ∈ k. Let k be a
PV-extension of k containing elements z1, . . . , zm such that z′i = bizi for i = 1, . . . ,m, Show that if
the zi are algebraically dependent over k then there exist integers ni, not all zero, such that

∏
zni
i ∈ k.

Hint: subgroups of (C∗)n are defined by equations of the form
∏
Xni = 1.

3) Incomplete γ-Function Recall the definition of the Incomplete Γ-function.

γ(x, t) =

∫ x

0
st−1e−sds =

∫ x

0
θ(s, t)ds

Where θ = e−x+(t−1) log x. Let C be the algebraic closure of C(t) and let K = C(x, log x, θ).

(i) A consequence of the Kolchin Ostrowski Theorem is: Let k ⊂ K be differential fields witht he same
constants. Let a, b ∈ k and u, v ∈ K with u′ = a and v′ = bv. If u and v are algebraically
dependent over k, then either u ∈ k or vn ∈ k for some positive integer n Use this to show that
θ is transcendental over C(x, log x).

(ii) We have
∂nγ(x, t)

∂tn
=

∫ x

0
γn(s)ds where γn(x) = (log x)nθ

In this lecture we showed that if γ(x, t) satisfies a polynomial differential equation with respect to
t, then for some n, there exist c0, . . . cn ∈ C, cn 6= 0 and f ∈ K such that

c0γ0 + . . .+ cnγn = (c0 + c1 log x+ . . . cn(log x)n)θ =
∂f

∂x
.



(i) Let F be the algebraic closure of C(x, log x). Using the partial fraction decomposition of
f over F with respect to θ, show that f = gθ for some g ∈ C(x, log x). Therefore
c0 + c1 log x+ . . . cn(log x)n = g′ + (−1 + t

x−1
)g.

(ii) Expand g in partial fractions with respect to log x over the algebraic closure of C(x) to show
that g =

∑m
i=0 ai(log x)i with ai ∈ C(x).

(iii) Show that m = n and cn = a′n + (−1 + t
x−1

)an. Use the partial fraction decomposition
of an to achieve a contradiction.

4) Bessel Equation Show that if the Bessel Equation

y′′ +
1

x
y′ + (1−

ν2

x2
)y = 0

has a solution z such that φ = z′/z is algebraic over C(x), then ν − 1
2
∈ Z. Hint: The computation

is outlined in [28] and [29, page 417] and I will follow Kolchin’s hints. φ satisfies the associated Riccati
equation

φ′ + φ2 +
1

x
φ+ 1−

ν2

x2
= 0.

(i) Expanding φ in fractional powers of x−1, show that no nonintegral powers occur, that no negative
power occurs, and that the constant term is ±

√
−1.

(ii) Expanding in powers of (x − c), c 6= 0, show that nonintegral powers do not appear, negative
powers other than (x− c)−1 do not occur and if (x− c)−1 occurs it has coefficient 1.

(iii) Conclude that since φ ramifies over at most x = 0, φ ∈ C(x) and furthermore that the expansion
in powers of x is of the form bx−1 + . . . where b2 = ν2

Therefore φ = a + bx−1 +
∑

1≤t≤s(x − ct)−1 where a = ±
√
−1 and b2 = ν2. Substituting into

the Riccati equation and multiplying by x2
∏

(x− ct)2, we obtain a polynomial in x. The coefficient of
x2s+1 is 2a(b+ 1

2
+ s). This coefficient must vanish and since b = ±ν, we have ν − 1

2
∈ Z.

Note that if ν − 1
2
∈ Z, let s = ν − 1

2
≥ 0 (replacing ν by −ν if necessary). The elements

η± = e±i
∑

0≤t≤s
(

(s+ t)!

(s− t)!t!
)(±i)t2−tx−t−

1
2

yield a basis for the solution space of the Bessel Function.

5) Schlesinger’s Theorem We outline a proof of

Theorem. If a linear differential equation

L(y) = y(n) + an−1y
(n−1) + . . .+ a0(x)y = 0,

where the ai(x) ∈ C(x), has only regular singular points, then its monodromy group group is Zariski
dense in its Galois group over C(x).

There are many ways to define the notion of a regular singular point but for our purposes we say that a
point is a regular singular point at x = 0 if the differential equation basis of solutions of the form

xr
t∑
i=0

ai(x)(log x)i (2)



where r ∈ C and the ai(x) ∈ C{{x}}, the ring of series convergent in a neighborhood of 0. Let
Dε = {x | 0 < |x| < ε} andMε be the field of functions meromorphic in Dε.

(i) Let α1, . . . , αn ∈ C with αi − αj /∈ Z for i 6= j and let Fi,j ∈Mε. Show that if

m∑
j=0

n∑
i=1

Fi,jx
αi(log x)j = 0

then all the Fi,j = 0.

(ii) Let

F =

m∑
j=0

n∑
i=1

Pi,jx
αi(log x)j and G =

m∑
j=0

n∑
i=1

Qi,jx
αi(log x)j

with Pi,j, Qi,j ∈ C{{x}} and αi ∈ C, αi−αj /∈ Z. Show that if F/G = f ∈Mε, then F/G
has at worst a pole at 0.

(iii) Prove Schlesinger’s Theorem. Hint: The monodromy group is a subgroup of the differential Galois
group. It is enough to show that if an element in the associated Picard-Vessiot extension is left fixed
by the monodromy group then it lies in C(x) because the Galois correspondence shows that the
Zariski closure of the monodromy group must be the differential Galois group. If f, g are of the form
given in (2) then so are fg, uf + vg and df/dx where u, v ∈ C{{x}} are also of this form. Use
(ii) to show that any element of the associated Picard-Vessiot extension is meromorphic at any point
of the Riemann Sphere and so, by Liouville’s Theorem must be rational.

Lecture 2

1) Let K be a Picard-Vessiot extension of k with constants C and DGal(K/k) = G.

1. Let V be a G-stable finite dimensional C-vector space in K. Show that there is an LDE L(y) = 0
with coefficients in k such that V is the solution space of L(y) = 0. Hint: If y1, . . . , yr is a basis
of V , let L(y) = wr(y, y1, . . . , yn)/wr(y1, . . . , yn).

2. Let K be the Picard-Vessiot extension of k for the nth order equation L(y) = 0 and let V be the
solution space of L(y) = 0. Show that V contains a G invariant C-subspace of dimension r if and
only if L(y) = Ln−r(Lr(y)) where the order of Li is i. Hint: Use (i) to construct Lr(y). The
ring of differential operators has division algorithm so that we can write L = Ln−rLr + R where
the order of R is at most r − 1. Conclude that R(y) = 0 has too many solutions and so must be
0.

2) Painlevé-Boulanger Algorithm In this algorithm, Jordan’s Theorem is used to show that if an irreducible
linear differential equation L(y) = 0 of order n has an algebraic solution then it has an algebraic solution
z whose logarithmic derivative u = z′/z has minimal polynomial of the form

P (U) = bmU
m + . . . b0 = 0, bi ∈ C(x)

where m ≤ J(n). The following can be found in [8, page 92-95] and yields a bound on he degrees of the
bi



1. We first show that one can find an integer r such that the degree of bm is at most r. Note that the

roots ui of P (U) all of the form ui =
z′i
zi

where L(zi) = 0.

(i) We have
bm−1

bm
= u1 + . . .+ um =

z′1
z1

+ . . .+
z′m
zm

=
(z1 · · · zm)′

z1 · · · zm
.

The zeroes of bm are therefore the zeroes and poles of the zi and the ui will have only simple
poles at these points. Therefore the degree of bm ≤ m(M +N) where M is the number of
zeroes of the zi and N is the number of poles. We can bound N by the number of singular
points of L so it suffices to bound M .

(ii) w = z1 · · · zm is algebraic over C(x) and satisfies wt ∈ C(x). Therefore we may write

z1 · · · zm =

∏
(x− ai)αi

∏M
i=1(x− bi)βi∏

(x− ãi)α̃i

where the ai, ãi are singular points and the bi are zeroes of the zi. Note that the βi are
therefore nonnegative integers.

We can find a finite number of possibilities for the the αi, α̃i in terms of the exponents.
Furthermore, we can find an l such that the order of each zi at∞ is at most l. Therefore

∑
αi −

∑
α̃i +

N∑
i=1

βi ≤ ml, and so

M ≤
M∑
i=1

βi ≤ ml+
∑

α̃i −
∑

αi

2. We now outline a proof that the degree of each bi ≤ r +m− i. Show

(i) Each root ui of P (U) is of the form ui = y′i/yi for some solution yi of L(y) = 0.

(ii) The order of each ui at infinity is at least −1 and so the order of b0/bm = ±u1 · · ·um is at
least −m, . . . , the order of b1/bm at infinity is at least −(m− i) . . . , the order of bm−1/bm
at infinity is at least −1 .

(iii) Since the order of bi/bm at infinity is deg bm − deg bi we have deg bi ≤ r +m− i.

3) Indicial polynomials of factors This is from [7, Lemma 2.1]. Let

L = an(x)∂n + an−1(x)∂n−1 + . . .+ a0(x) ∈ C[x, ∂]

be a linear differential operator of order n with the polynomials ai of degree at most r. We have that

L(xs) = xs = xs+gL(p0(s) + . . .+ pt(s)x
t)

where −r ≤ gL, 0 ≤ t and the pi are polynomials, p0 6= 0. The polynomial p0 is called the indicial
polynomial at x = 0 of L and denoted by indL.

1. If L = Ln−rLr where the order of Li = i, then gL = gLn−r + gLrand

indL(s) = indLr(s)indLn−r(s+ gLr).



2. Define ZL = {m ∈ N | indL(m) = 0}. Let L = Ln−rLr as above and let y =
∑∞
i=0 aix

i.
Show: If L(y) = 0 and Lr(y) = xN(

∑∞
i=0 bix

i) with N > maxZL + gL then Lr(y) = 0.

Lecture 3

1. Let L(y) = y(n) + an−1y
(n−1) + . . . + a0, ai ∈ k with PV extension K and Galois group

G ⊂ GLn(C). Show that G ⊂ SLn(C) if and only if there exists a u ∈ k such that u′/u = an−1.
Hint: L(y) = wr(y, y1, . . . yn)/wr(y1, . . . , yn for any basis {y1, . . . , yn} of the solution space.

2.(i) Let E ⊂ Kbe differential fields with the same constants and assume that y ∈ K is algebraic over
E of degree r and y′/y ∈ E. Show that the minimal polynomial of y over E is of the form Y r−a = 0
for some a ∈ E. Hint: If P (Y ) is the minimal polynomial, differentiate P (y) = 0 and compare this to
P (y) = 0 to show that most of the coefficients must be zero.

(ii) Furthermore, if in addition, E is algebraic over k, then the minimal polynomial of y over k is of the
form

Y rm + am−1Y
r(m−1) + . . .+ a1Y

r + a0 = 0

for some m ≤ [E : k] and ai ∈ k.
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